6 research outputs found

    Optimizing The Spatial Content Caching Distribution for Device-to-Device Communications

    Full text link
    We study the optimal geographic content placement problem for device-to-device (D2D) networks in which the content popularity follows the Zipf law. We consider a D2D caching model where the locations of the D2D users (caches) are modeled by a Poisson point process (PPP) and have limited communication range and finite storage. Unlike most related work which assumes independent placement of content, and does not capture the locations of the users, we model the spatial properties of the network including spatial correlation in terms of the cached content. We propose two novel spatial correlation models, the exchangeable content model and a Mat\'{e}rn (MHC) content placement model, and analyze and optimize the \emph{hit probability}, which is the probability of a given D2D node finding a desired file at another node within its communication range. We contrast these results to the independent placement model, and show that exchangeable placement performs worse. On the other hand, MHC placement yields a higher cache hit probability than independent placement for small cache sizes.Comment: appeared in Proc. IEEE Intl. Symposium on Info. Theory, Barcelona, Spain, July 201

    On/Off Macrocells and Load Balancing in Heterogeneous Cellular Networks

    Full text link
    The rate distribution in heterogeneous networks (HetNets) greatly benefits from load balancing, by which mobile users are pushed onto lightly-loaded small cells despite the resulting loss in SINR. This offloading can be made more aggressive and robust if the macrocells leave a fraction of time/frequency resource blank, which reduces the interference to the offloaded users. We investigate the joint optimization of this technique - referred to in 3GPP as enhanced intercell interference coordination (eICIC) via almost blank subframes (ABSs) - with offloading in this paper. Although the joint cell association and blank resource (BR) problem is nominally combinatorial, by allowing users to associate with multiple base stations (BSs), the problem becomes convex, and upper bounds the performance versus a binary association. We show both theoretically and through simulation that the optimal solution of the relaxed problem still results in an association that is mostly binary. The optimal association differs significantly when the macrocell is on or off; in particular the offloading can be much more aggressive when the resource is left blank by macro BSs. Further, we observe that jointly optimizing the offloading with BR is important. The rate gain for cell edge users (the worst 3-10%) is very large - on the order of 5-10x - versus a naive association strategy without macrocell blanking
    corecore